3D printing has emerged as a suitable technology for creating foodstuff with functional, sensorial, and nutritional attributes. There is growing interest in creating plant-based foods as alternatives to address current demands, especially to tailor consumer preferences. Consequently, plant-derived edible inks for additive manufacturing have emerged as suitable options, including emulsion gels (or emulgels). These gels can be formulated entirely from plant-derived lipids, proteins, polysaccharides, and/or other ingredients to form complex fluids that belong to the category of soft matter. This review summarizes the most recent advances in the areas of formation, structuring, properties, and applications of plant-based emulsion gels for 3D-printed food. These semisolid materials can be extruded to the set or solidified into structures with predesigned shapes, fidelity, and sensory attributes across the senses (taste, smell, sight, and touch) along with nutrition values. Emulsion gels can be formed by either solely gelling the continuous phase or combining this process with the formation of a particle network through aggregation and close packing. The current challenges facing the development of edible inks using plant-based materials are critically discussed to stimulate further advances in the rapidly growing field of personalized 3D-printed foods.
Read full abstract