Sodium alginate (SA) and chito oligosaccharide (COS) are widely used food additives in the food industry, and exploring their interaction to form polyelectrolyte complexes (PECs) may provide insights into food development. In the present study, the effects of viscosity-average molecular weight (Mv) and relative amounts of SA on the formation of sodium alginate/chito oligosaccharide polyelectrolyte (SCP) complexes were investigated. The results showed that the electrostatic interaction between -COOH and -NH2 and the hydrogen bonding between OH, were attributed to the formation of the SCP complexes. Then the formation and properties of SCP complexes were greatly dependent on the Mv and the relative amount of SA. SA with Mv of ≥2.16 × 106 Da could form spherical SCP complexes, while the SA/COS ratio (w/w) ≥ 0.8 was not conducive to the formation of SCP complexes. Moreover, the SCP complexes were more stable in the gastric environment than in the intestinal condition. In addition, 1.73 × 107 Da was the optimal Mv of SA for SCP complexes formation. This study contributed to a comprehensive understanding of the interaction between SA and COS, and shed light on the potential application of SA and COS formulation to develop new food products.
Read full abstract