Abstract

Abstract As one of the drinking water sources for Xuzhou city, Yuquan River has been polluted seriously in recent years. In this paper, enhanced coagulation technology was selected and various parameters (coagulant species, dosage, solution pH and coagulant aid species) were optimized for Yuquan River water treatment. Turbidity and UV254 removal rate were calculated to assess coagulation efficiencies, and meanwhile floc generation kinetics, zeta potential and scanning electron microscope (SEM) spectra were measured to study the coagulation mechanism. Results indicated that the coagulation effect of polyaluminium chloride (PAC) on Yuquan River water was better than that of aluminium sulphate (AS), and its optimal dosage was 20 mg/L. Flocs produced by PAC also exhibited larger size and faster growth velocity than those of AS. Moreover, the applicable initial pH range for Yuquan River was 6.0–9.0, and the optimal coagulation efficiency was observed at pH 7.0. When PAC or AS was selected as coagulant, the application of sodium alginate (SA) could improve turbidity and UV254 removal due to its adsorption bridging role. In addition, coagulation efficiency could be enhanced in an AS coagulation system when polyacrylamide (PAM) was dosed as coagulant aid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call