High-pressure and/or high-temperature analysis of geo- and material science samples routinely employs diamond anvil cells (DACs) as a research instrument. In particular, DACs allow for various in situ characterizations (e.g. Raman and Fourier transform infra red spectroscopies, X-ray diffraction (XRD), X-ray spectroscopy including fluorescence (XRF) and absorption (XAS)) at elevated pressure and temperature. The measurement of pressure (P) and/or temperature (T) in the sample chamber is crucial, but not always accurate, more specifically in the case of low-pressure applications (a few GPa). The development of modified diamonds (intelligent anvils ‘i-anvils’) adapted to a new generation of DACs (intelligent diamond anvil cells: iDAC) can contribute to solve this problem, as the diamond itself serves as the PT sensor, being prepared, for example, by high-energy ion implantation [H. Bureau, M. Burchard, S. Kubsky et al., This volume (2006).] on a micrometric scale. Several most interesting measurement methods used with DACs are based on X-ray techniques (e.g. XRF, XRD, XAS). We present the first results of X-ray transmission measurements with iDACs, performed at the hard-X-ray microfocus beamline ID22 at the ESRF (European Synchrotron Radiation Facility), Grenoble, France. Sensor response to intense irradiation as a function of X-ray energy (E ph∈10;18.1 keV) was investigated. The values of the sensor were found to be independent of the irradiation in the investigated energy range and thus validate the use of these sensors for precise and reliable measurements on a wide range of applications with high-energy synchrotron radiation. No influence of the sensor on the X-ray transmission properties of the anvil has been found.