In the asphalt pavement structure design method, the structural analysis and design are generally performed in the form of point values. However, determining the point value form of design parameters based on the statistical analysis theory cannot fully reflect the complex properties such as variability and uncertainty of parameters. In order to further improve the reliability and practicability of pavement design parameters, in this article, we have introduced the interval number representation that can better reflect the complex nature of parameters; but the interval number algorithm is too complicated and common calculation tools and software are difficult to adopt, which limit the wide application of interval analysis to some extent. The article analyzes the algorithm of interval numbers, focusing on the analysis of interval numbers of unary and binary functions. In this way, the point number operation can be used to obtain the interval number result of the function consistent with the interval number algorithm, which avoids the complicated interval number operation process and the interval expansion. The point numerical function algorithm of interval numbers is verified by design parameters and the calculation of asphalt pavement structure such as axle load conversion, cumulative equivalent axis calculation, calculation of foundation layer tensile stress of each structure layer, calculation of mixture penetration strength, fatigue cracking check of asphalt mixture layer, permanent deformation check, and vertical pressure strain test of roadbed top surface. In conclusion, this research provides a simple and easy way to implement the application of mathematical tools for interval analysis, which is suitable for direct use for existing point numerical calculation tools and software.