Abstract

This paper takes a fresh look at the application of interval analysis to ordinary differential equations and studies how consistency techniques can help address the accuracy problems typically exhibited by these methods, while trying to preserve their efficiency. It proposes to generalize interval techniques into a two-step process: a forward process that computes an enclosure and a backward process that reduces this enclosure. Consistency techniques apply naturally to the backward (pruning) step but can also be applied to the forward phase. The paper describes the framework, studies the various steps in detail, proposes a number of novel techniques, and gives some preliminary experimental results to indicate the potential of this new research avenue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.