The organic carbon content of soils is a key parameter of soil fertility. Moreover, carbon accumulation in soils may mitigate the increase in atmospheric CO2 concentration. The principles of carbon accumulation in arable soils are well known. The inclusion of clover/alfalfa/grass within the rotation is a central instrument to increase soil organic carbon. In addition, the regular application of rotted or composted farmyard manure within the rotation can increase soil organic carbon contents much more than the separate application of straw and cattle slurry. Humic substances, as a main stable part of soil organic carbon, play a central role in the accumulation of soil carbon. A major effect of compost application on soil carbon may be the introduction of stable humic substances which may bind and stabilize labile organic carbon compounds such as amino acids, peptides, or sugars. From this point of view, a definite soil carbon saturation index may be misleading. Besides stable composts, commercially available humic substances such as Leonardite may increase soil organic carbon contents by stabilization of labile C sources in soil.