The results of studies showing the possibility of obtaining long products from composite ceramic nanomaterials by self-propagating high-temperature synthesis (SHS) extrusion have been presented, combining the combustion process of the initial components of the exothermic mixture and the high-temperature deformation of the combustion products. It is found that the production of nanoscale elements of the structure of the material is regulated by regime parameters of the technological process and a special choice of the initial composition of the initial exothermic mixture. The experimental results of studies of the microstructure and properties of the resulting nanostructured composite are discussed. The regularities of the influence of shear plastic deformation during the SHS extrusion on the microstructure and the size of the structural components of the synthesized ceramic composite have been studied in comparison with other methods: SHS without the application of external forces, free SHS compression, free SHS compression followed by quenching, and SHS pressing.
Read full abstract