Stable organic radicals have long been desired for applications in quantum information science and optoelectronic semiconductor. Weakening the reactivity of unpaired electrons is an efficient strategy for fabrication stable radicals. The dual aryl/alkyl-substituted dihydrophenazine (DArPZ/DAlPz) derivatives have attracted a lot of attention due to their potential radical stability characteristics. In this work, three stable DArPZ-based radical cation compounds are obtained through tuning peripheral substituted groups with different electron donating/withdrawing effect to discuss their reactive activity changes in different solvent and aggregate state. Employing systematic experiments from crystallography, spectroscopy and theoretical calculation analyses, some referenceable molecular structure design strategy and the analytical model of evaluating radical behavior are formed and summarized. In addition, radical cations have good masking ability without continuous electrical circulating, implying their application in light-shading electrochromic devices. This work is referable on the design of stable radicals, the establishment of dynamic evaluation strategies and theoretical analysis models for their reactivity.