This paper investigates the role of driver behavior especially head pose dynamics in safety–critical events (SCEs). Using a large dataset collected in a naturalistic driving study, this paper analyzes the head pose dynamics and driving behavior in moments leading up to crashes or near-crashes. The study uses advanced computer vision and mixed logit modeling techniques to identify patterns and relationships between drivers’ head pose dynamics and crash involvement. The results suggest that driver-head pose dynamics, especially poses that indicate distraction and movement volatility, are important factors that can contribute to undesirable safety outcomes. Marginal effects show that angular deviation for head pose dynamics indicated by yaw, pitch and roll increase the likelihood of crash intensity by 4.56%, 4.92% and 8.26% respectively. Furthermore, traffic flow and lane changing also contribute to increase in likelihood of crash intensity. These findings provide new insights into pre-crash factors, especially human factors and safety–critical events. The study highlights the importance of considering human factors in designing driver assistance systems and developing safer vehicles. This research contributes by examining naturalistic driving data at the microscopic level with early detection of behaviors that lead to SCEs and provides a basis for future research on automation.
Read full abstract