Abstract The endogenous content of methionine in isolated petals of Tradescantia was found to increase during petal senescence while the levels of S -methylmethionine and protein were found to decline. The increase in free methionine was, at least in part, the result of protein degradation. Methionine and homocysteine were shown to be intermediates in ethylene biosynthesis while S -methylmethionine was not involved. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) to all floral tissues resulted in large stimulations of ethylene production. ACC was shown to be an endogenous amino acid the internal levels of which correlated positively with the rate of ethylene production. Application of l -methionine-[U- 14 C] led to a rapid appearance of radioactivity in both ethylene and ACC. The specific radioactivity of C-2 and C-3 of ACC and that of ethylene were found to be nearly identical which indicated that ACC was the immediate precursor of ethylene in senescing petals of Tradescantia .