The familiar divergence and Kelvin–Stokes theorem are generalized by a tensor-valued identity that relates the volume integral of the gradient of a vector field to the integral over the bounding surface of the tensor product of the vector field with the exterior normal. The importance of this long-established yet relatively little-known result is discussed. In flat two-dimensional space, it reduces to a relationship between an integral over an area and that over its bounding curve, combining the two-dimensional divergence and Kelvin–Stokes theorems together with two related theorems involving the strain, as is shown through a decomposition using a suitable tensor basis. A fluid dynamical application to oceanic observations along the trajectory of a moving platform is given. The potential extension of the generalized two-dimensional identity to curved surfaces is considered and is shown not to hold. Finally, the paper includes a substantial background section on tensor analysis, and presents results in both symbolic notation and index notation in order to emphasize the correspondence between these two notational systems.
Read full abstract