Exploiting royal shrimp waste to produce value-added biocomposites offers environmental and therapeutic benefits. This study proposes biocomposites based on chitosan and bioglass, using shrimp waste as the chitosan source. Chitin extraction and chitosan preparation were characterized using various analytical techniques. The waste composition revealed 24 % chitin, convertible to chitosan, with shells containing 77.33-ppm calcium. (X-ray diffraction) XRD analysis showed crystallinity index of 54.71 % for chitin and 49.14 % for chitosan. Thermal analysis indicated degradation rates of 326 °C and 322 °C, respectively. The degree of deacetylation of chitosan was 97.08 % determined by proton nuclear magnetic resonance (1H-NMR) analysis, with an intrinsic viscosity of 498 mL.g−1 and molar mass of 101,720 g/mol, showing improved solubility in 0.3 % acetic acid. Royal chitosan (CHR) was combined with bioglass (BG) via freeze-drying to create a CHR/BG biocomposite for bone surgery applications. The bioactivity of the CHR/BG was tested in simulated body fluid (SBF), revealing a biologically active apatite layer on its surface. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) analysis confirmed enhanced bioactivity of the CHR/BG compared to commercial chitosan. The CHR/BG biocomposite demonstrated excellent apatite formation, validated by Scanning Electron Microscopy (SEM), highlighting its potential in bone surgery.