Gamma-ray detection plays a crucial role in the fields of biomedicine, space exploration, national defense, and security. High-precision gamma photon detection relies on scintillation crystals, which attenuate gamma rays through mechanisms such as photoelectric effect and Compton scattering. These interactions generate light signals within the scintillation crystal, which are subsequently converted into electronic signals using photodetectors, enabling accurate readout, and analysis. Improving the readout efficiency of visible photons in crystal detectors can significantly improve the efficiency of gamma-ray detection. Scintillator crystals are usually hard and brittle materials, which are difficult to process. In this paper, we innovatively propose the method of using a femtosecond laser to process grooved microstructures on the light output surface of scintillator crystals to improve the detection efficiency, and thus enhance the comprehensive performance of gamma-ray detection. Optical simulation software is first used to explore the enhancement of the light output performance by the grooved microstructures. Subsequently, a 5-dimension system for femtosecond laser processing of scintillator crystals was constructed, which can achieve accurate processing of grooved structures. Finally, the feasibility of the study was verified by applying grooved microstructure on crystal bars and crystal arrays. TracePro simulation results showed an average efficiency improvement in light output of 33.56% within the groove parameters: spacing from 20 to 140µm, depth from 8 to 28µm, and width from 10 to 30µm. A custom-designed readout electronic system for gamma detection and a laser processing platform was then constructed to evaluate the feasibility of applying grooved structures to the lutetium-yttrium oxyorthosilicate (LYSO) crystal surface. According to the simulation results, 12 groups of crystal bars were fabricated with spacings from 60 to 140µm, depths from 7 to 16µm, and widths from 11 to 14µm. Experimental results showed an average improvement of 20.4% in light output for the crystal bars, and that of the crystal arrays can be improved by 6.85% on average. This study introduces a method of using femtosecond lasers to fabricate grooved microstructures on LYSO crystal surfaces, which has demonstrated a significant improvement in light output in both simulation and experimentation. This method can be applied to the production of crystal arrays at a low cost and on a large scale, showing promising potential for common gamma detection applications, such as medical imaging, industry, and astrophysics.
Read full abstract