Cellulose nanofibrils (CNFs) can serve as an efficient surface enhanced Raman scattering (SERS) platform for in situ detection of trace targets. In this study, a highly reproducible SERS platform based on TEMPO-oxidized CNFs (T-CNFs) was fabricated by the ion-exchange. Self-assembly of silver nanoparticles (AgNPs) was accomplished in only 120 s. The abundant carboxylate groups and good hydrophilicity of T-CNFs facilitated uniform and dense loading of AgNPs over the surface area. The obtained SERS substrate greatly enhanced the Raman signal of different pesticides, and the detection limits of thiram and thiabendazole were 5.81 × 10−8 M and 9.63 × 10−8 M, respectively. SERS substrate could produce homogeneous Raman-enhanced signals (relative standard deviation (RSD) = 6.59 %). In addition, due to the good flexibility, SERS substrate could collect and detect pesticide residues from the surface of apples. The intensities of Raman characteristic peak at 1384 cm−1 showed a good linear relationship with the analyte concentrations (0.96 ng/cm2–9600 ng/cm2). The constructed SERS substrate provided a theoretical basis for the preliminary rapid screening of hazardous chemical residues in food, which was of great value for the SERS technique to become a routine on-site analysis method for pesticide residues.
Read full abstract