Abstract

Hydrogen sulfide (H2S) is known to effectively inhibit the browning of fresh-cut apples, but the mechanism at a metabolic level remains unclear. Herein, non-targeted metabolomics was used to analyze metabolic changes in surface and internal tissues of fresh-cut apple after H2S treatment. The results showed that prenol lipids were the most up-accumulated differential metabolites in both surface and inner tissue of fresh-cut apple during browning process, which significantly down-accumulated by H2S treatment. H2S treatment reduced the consumption of amino acid in surface tissue. Regarding inner tissue, H2S activated defense response through accumulation of lysophospholipid signaling and induced the biosynthesis of phenolic compounds. We therefore propose that H2S inhibited the surface browning of fresh-cut apple by reducing the accumulation of prenol lipids, directly delaying amino acid consumption in surface tissue and indirectly regulating defense response in inner tissue, which provides fundamental insights into browning inhibition mechanisms by H2S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.