The neuropeptide galanin is known to inhibit the evoked release of acetylcholine in ventral hippocampus of the rat. Co-localization of this peptide with choline acetyltransferase in neurons of the cholinergic septal nuclei has been demonstrated in the rat and non-human primate. The severe deficiency of the cholinergic hippocampal projection system arising mainly from the vertical limb nucleus of the diagonal band of Broca, also referred to as Ch2 region, is a constant finding in Alzheimer's disease, a disorder which is neuropathologically characterized by the appearance of senile plaques, neurofibrillary tangles and congophilic angiopathy in neo- and archicortical structures. In the present study for the first time galanin immunoreactivity in the human Ch2 region is morphologically investigated and related to the severity of hippocampal plaques and neurofibrillary tangles in Alzheimer's disease. An inverse relationship between decreasing galanin immunoreactivity in the Ch2 region and amounts of senile plaques and neurofibrillary tangles in the hippocampus is indicated. Considering the cholinergic deficiency in Alzheimer's disease as a secondary phenomenon to primary cortical and hippocampal lesions, and realizing the inhibitory effect of galanin upon acetylcholine release in hippocampus, this preliminary study suggests that a decreased galanin immunoreactivity in Ch2 in Alzheimer's disease, reflects a possible negative feedback mechanism to a degenerating cholinergic projection system.
Read full abstract