AbstractDespite the critical role of hydrogels in material science and biotechnology, current methods for analyzing their formation lack real‐time monitoring and require complex sample preparation and instrumentation. In this work, an innovative methodology is introduced for the real‐time analysis of enzymatically catalyzed hydrogelation. Electrochemical impedance spectroscopy (EIS) coupled with interdigitated electrodes (IDEs) to sense and transduce the gelation reaction of model precursor carboxymethyl cellulose‐tyramine (CMC‐TA) conjugates that undergoes enzymatic cross‐linking by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). Real‐time monitoring involves single‐frequency analyses at 3 × 105 Hz, where the measured impedance consists solely of a resistive component, and the admittance equates to solution conductance. The gelation trajectories for all tested enzymatically cross‐linked hydrogel component combinations are determined by substituting the conductance data in the modified Michaelis–Menten kinetic model. Specifically, for CMC‐TA cross‐linked by HRP, the authors calculate apparent KM and kcat values of 82.1 µM and 95.5 s−1, respectively. These findings are further validated through rheological characterization, including oscillatory shear measurements and microrheology. Overall, this research paves the way for a streamlined, accurate, and cost‐effective approach to controllable enzymatically initiated hydrogel synthesis, enhancing their successful application in various fields ranging from material science to biotechnology.
Read full abstract