AbstractDeep level transient spectroscopy (DLTS) was used to examine the metastability of a defect configuration in epitaxially grown boron-doped p-type Si. We report the detection of a new metastable defect Hα2 in p-Si following room temperature alpha particle irradiation. DLTS measurements coupled with bias-on/bias-off cooling cycles were used to study the annealing and introduction kinetics of this metastable defect. After removing Hα2 by zero-bias annealing at room temperature, it was re-introduced by reverse bias annealing in the 240-265 K temperature range under predominantly first order kinetics. The energy level and apparent capture cross section, as determined by DLTS, were E,+ 0.43 eV and 1.4 × 10−15 cm2, respectively.