Within the framework of economic globalisation, ports serve as critical junctures in international trade and play a vital role. However, as infrastructure is closely linked to the natural environment, ports are highly susceptible to the impacts of meteorological disasters. Therefore, a comprehensive assessment of the risks posed by meteorological hazards to ports, establishing corresponding early warning mechanisms, and adopting reasonable response and recovery strategies, is paramount in ensuring the safe operation of ports and maintaining the stability of international trade. This study has comprehensively analysed historical data and identified the pre-established loss stratification system, improving the theoretical construct of “expected loss”. Additionally, this research has innovatively integrated the idea of preventative factors aligned with risk indicators. A quantitative algorithm was used to factor in the preventative factors within the computational procedure, deriving the weights pertinent to each risk indicator. This research aimed to reduce the subjectivity inherent in the weighting assignment process through such an approach, thereby enhancing disaster risk assessment’s scientific rigour and reliability. Moreover, it underscores the critical role of adaptive urban planning in enhancing the resilience of crucial economic nodes like ports, thereby contributing to the broader objectives of sustainable urban development.
Read full abstract