The integration between RNA-sequencing and micro-spectroscopic techniques has recently profiled the advanced transcriptomic discoveries on the cellular level. In the current study, by combining the sensation approach (including bio-molecules structural evaluation, high throughput next-generation sequencing (HT-NGS), and confocal Raman microscopy) the functionality on the single live cancer cells’ ferroptosis and apoptosis signaling pathways is visualized. Our study reveals a hydrophobic tunnel by phycocyanin-isoprene molecule (PC-SIM) electrostatic charge within hepatoma cells (HepG2) that activates the ferritin light chain (FTL) and caspase-8 associate protein (CASP8AP2) ferroptosis responsible genes. Moreover, this research proves that PC-vanillin (VAN) stimulation induces the actin-binding factor profilin-1 (PFN1), subsequently in situ tracking its expression at 1139.75 cm−1 microRaman wavenumber. While PC-thymol (THY) induces the lysophospholipase-2 (LYPLA2) (p-value = 0.009) and acetylneuraminate-9-O-acetyltransferase (CASD1) (p-value = 0.022) at 1143.19 cm−1. Our findings establish a new concept to promote the cross-disciplinary use of instant cellular-based detection technology for intermediary evaluating the signaling cellular transcriptome.