BackgroundAngiogenesis inhibitors have been identified to improve the efficacy of immunotherapy in recent studies. However, the delayed therapeutic effect of immunotherapy poses challenges in treatment planning. Therefore, this study aims to explore the potential of non-invasive imaging techniques, specifically intravoxel-incoherent-motion diffusion-weighted imaging (IVIM-DWI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), in detecting the anti-tumor response to the combination therapy involving immune checkpoint blockade therapy and anti-angiogenesis therapy in a tumor-bearing animal model.MethodsThe C57BL/6 mice were implanted with murine MC-38 cells to establish colon cancer xenograft model, and randomly divided into the control group, anti-PD-1 therapy group, and combination therapy group (VEGFR-2 inhibitor combined with anti-PD-1 antibody treatment). All mice were imaged before and, on the 3rd, 6th, 9th, and 12th day after administration, and pathological examinations were conducted at the same time points.ResultsThe combination therapy group effectively suppressed tumor growth, exhibiting a significantly higher tumor inhibition rate of 69.96% compared to the anti-PD-1 group (56.71%). The f value and D* value of IVIM-DWI exhibit advantages in reflecting tumor angiogenesis. The D* value showed the highest correlation with CD31 (r = 0.702, P = 0.001), and the f value demonstrated the closest correlation with vessel maturity (r = 0.693, P = 0.001). While the BOLD-MRI parameter, R2* value, shows the highest correlation with Hif-1α(r = 0.778, P < 0.001), indicating the capability of BOLD-MRI to evaluate tumor hypoxia. In addition, the D value of IVIM-DWI is closely related to tumor cell proliferation, apoptosis, and infiltration of lymphocytes. The D value was highly correlated with Ki-67 (r = − 0.792, P < 0.001), TUNEL (r = 0.910, P < 0.001) and CD8a (r = 0.918, P < 0.001).ConclusionsThe combination of VEGFR-2 inhibitors with PD-1 immunotherapy shows a synergistic anti-tumor effect on the mouse colon cancer model. IVIM-DWI and BOLD-MRI are expected to be used as non-invasive approaches to provide imaging-based evidence for tumor response detection and efficacy evaluation.
Read full abstract