Human immunodeficiency virus (HIV) accessory protein viral protein R (Vpr) plays a key role in virus replication and induces cell cycle arrest and apoptosis in various cell types including T cells and neuronal and tumor cells following infection with Vpr-expressing HIV isolates or exposure to the extracellular Vpr protein. The C-terminal Vpr peptide encompassing amino acids 52-96 (Vpr-(52-96)) is required for exerting the apoptotic effects, whereas the N-terminal Vpr-(1-45) peptide is responsible for virus transcription. We demonstrate that Vpr-(52-96) induced apoptosis in human promonocytic THP-1 cells and primary monocytes through the mitochondrial pathway in a caspase-dependent manner. To understand the regulation of Vpr-induced apoptosis, we investigated the signaling pathways, particularly the MAPKs, and the transcription factors involved. Although both Vpr-(52-96) and Vpr-(1-45) peptides induced phosphorylation of all the three members of the MAPKs, Vpr-(52-96)-activated JNK selectively induced apoptosis in monocytic cells through the mitochondrial pathway as determined by using JNK inhibitors SP60025, dexamethasone, curcumin, and JNK-specific small interfering RNAs. Furthermore Vpr-(52-96)-induced apoptosis was mediated by inhibition of downstream antiapoptotic Bcl2 and c-IAP1 genes whose expression could be restored following pretreatment with JNK-specific inhibitors. Overall the results suggest that Vpr-(52-96)-activated JNK plays a key role in inducing apoptosis through the down-regulation of antiapoptotic Bcl2 and c-IAP1 genes.
Read full abstract