Intestinal injury from resuscitated hemorrhagic shock (HS) disrupts intestinal microvascular flow and causes enterocyte apoptosis, intestinal barrier breakdown, and injury to multiple organs. Fresh frozen plasma (FFP) resuscitation or directed peritoneal (DPR) resuscitation protect endothelial glycocalyx, improve intestinal blood flow, and alleviate intestinal injury. We postulated that FFP plus DPR might improve effective hepatic blood flow (EHBF) and prevent associated organ injury (liver, heart). Anesthetized Sprague-Dawley rats underwent HS (40% mean arterial pressure, 60 minutes) and were randomly assigned to groups (n = 8 per group): Sham; crystalloid resuscitation (CR; shed blood + 2 volumes CR); DPR (intraperitoneal 2.5% peritoneal dialysis fluid); FFP (shed blood + 1 vol IV FFP); FFP + DPR. EHBF was measured at postresuscitation timepoints. Organ injury was evaluated by serum ELISA (fatty acid-binding protein [FABP]-1 [liver], FABP-3 [heart], Troponin-I [heart], and Troponin-C [heart]) and hematoxylin and eosin. Differences were evaluated by 1-way ANOVA and 2-way repeated-measures ANOVA. CR resuscitation alone did not sustain EHBF. FFP resuscitation restored EHBF after resuscitation (2 hours, 3 hours, and 4 hours). DPR resuscitation restored EHBF throughout the postresuscitation period but failed to restore serum FABP-1 VS other groups. Combination FFP + DPR rapidly and sustainably restored EHBF and decreased organ injury. CR and DPR alone had elevated organ injury (FABP-1 [hepatocyte], FABP-3 [cardiac], and Troponin-I/C), whereas FFP or FFP + DPR demonstrated reduced injury at 4 hours after resuscitation. HS decreased EHBF, hepatocyte injury, and cardiac injury as evidenced by serology. FFP resuscitation improved EHBF and decreased organ damage. Although DPR resuscitation resulted in sustained EHBF, this alone failed to decrease hepatocyte or cardiac injury. Combination therapy with DPR and FFP may be a novel method to improve intestinal and hepatic blood flow and decrease organ injury after HS/resuscitation.
Read full abstract