Glioblastoma is the most malignant and prevalent brain tumor in adults. It can grow and spread quickly causing harm to the brain health. One of the major challenges in treatment of glioblastoma is drug resistance. Use of synergistic combination of two drugs with different anti-tumor effects is nowadays highly considered in the development of effective therapeutic strategies for many malignancies. In the present study, we showed synergistic therapeutic efficacies of two chemical compounds, N-(4-hydroxyphenyl) retinamide (4HPR) and suberoylanilide hydroxamic acid (SAHA), for significant reduction in cell viability of rat C6 and human T98G glioblastoma cells. These compounds (4HPR and SAHA)were used alone or in synergistic combination for evaluating their various anti-tumor effects. The results showed that combination of 4HPR and SAHA significantly induced morphological and molecular features of astrocytic differentiation in C6 and T98G glioblastoma cells. Combination of 4HPR and SAHA proved to be an important therapeutic strategy for inhibiting cell growth and inducing differentiation in glioblastoma cells. Furthermore, combination of the two drugs showed more efficacies than either dug alone in reducing in vitro cell invasion (transwell assay), cell migration (wound healing assay), and angiogenesis (tube formation assay) due to down regulation of the molecules involved in these processes. The ultimate of goal of using this combination of drugs was induction of apoptosis. The results showed that these drugs in synergistic combination contributed highly to increases in morphological and molecular features of apoptotic death in the tumor cells. The results from molecular studies indicated that cell death occurred via activation of the extrinsic and intrinsic pathways of apoptosis in both C6 and T98G cells. The drugs in combination also contributed to dramatic inhibition of histone deacetylase 1, an important epigenetic player in promoting growth in glioblastoma cells. This novel combination of drugs should also be considered as a promising therapeutic strategy for the treatment of glioblastoma in vivo.