Apoptosis of epithelial cells is regarded as the initial pathological process of many lung diseases, including asthma. Previous studies have identified that galectin-7 (Gal-7), a regulator of apoptosis, was overexpressed in bronchial epithelial cells in asthma. However, the effect and mechanism of Gal-7 in the progression of asthma is still unclear. In this study, we investigated the expression and role of Gal-7 in the apoptosis of bronchial epithelial cells BEAS-2B upon TGF-β1 stimulation. TGF-β1 significantly induced apoptosis of BEAS-2B cells, as determined by flow cytometry. Western blot results revealed that the mRNA and protein expression of Gal-7 were obviously increased after TGF-β1 stimulation. Small interfering RNA (siRNA)-mediated knockdown of Gal-7 abrogated TGF-β1-evoked cell apoptosis. Simultaneously, increased Bcl-2 expression, decreased Bax expression and the cleavage of poly ADP-ribose polymerase (PARP) and caspase-3 activity were also monitored in TGF-β1-treated cells after Gal-7 siRNA transfection. Gal-7 silence also inhibited TGF-β1-induced c-Jun N-terminal kinase (JNK) phosphorylation in BEAS-2B cells. Furthermore, anisomycin, a specific activator for JNK, reversed the effect of Gal-7 siRNA on cell apoptosis induced by TGF-β1. These results demonstrate that Gal-7 silence attenuates TGF-β1-induced apoptosis in bronchial epithelial cells through the inactivation of JNK pathway. Therefore, Gal-7 may act as a potential target for asthma treatment.