Atherosclerosis is initiated when lipoproteins bind to proteoglycans (PGs) in arterial walls. The binding is mediated by apolipoprotein apoB-100 and/or apoE, both of which have binding affinity toward heparin. We developed covalently bound heparin coatings for APTES-modified silica capillaries and SiO2 chips and carried out capillary electrochromatography (CEC) and quartz crystal microbalance (QCM) studies on the interactions of heparin with selected peptide fragments of apoB-100 and apoE and, for CEC, also with low- and high-density lipoproteins (LDL and HDL), the latter with and without apoE. The peptides are known to mediate interactions of HDL and LDL with arterial PGs. Interactions and affinities were expressed in CEC as retention factors and reduced mobilities and in continuous flow QCM techniques as affinity constants. Both techniques showed heparin interactions to be stronger with apoB-100 peptide than with apoE peptide fragment, and they confirmed that the sulfate groups in heparin play an especially important role in interactions with apoB-100 peptide fragments. In addition, CEC confirmed the importance of sulfate groups of heparin in interactions between heparin and LDL and between heparin and apoE-containing HDL. CEC and QCM acted as excellent platforms to mimic these biologically important interactions, with small sample and reagent consumption.
Read full abstract