In a preliminary study, the presence of potassium and magnesium in a modified synthetic medium (PAS-III) was found to have a significant influence on platelet metabolism (using apheresis-derived, as well as buffy-coat-derived platelets) when compared with standard PAS-III. The differences included reduced glycolysis, as evidenced by lower consumption of glucose and lower production of lactate, but also better preservation of pH and hypotonic shock response reactivity. The results suggested that storage in modified PAS-III containing 20% plasma was comparable to storage in standard PAS-III containing 30% plasma. To confirm the preliminary results and to evaluate the effects of different preparation protocols, an international multicentre study, which included 11 different sites, was conducted. Platelets from 30 pools of approximately 20 buffy coat (BC) units each and 24 pooled apheresis platelet units were aliquoted for storage in plasma (reference) or synthetic medium using either a specific additive solution (PAS-III) containing 30% plasma or a modification of PAS-III containing 5.0 mm potassium and 1.5 mm magnesium (PAS-IIIM) and either 30% or 20% plasma. Units were stored at room temperature with agitation for 7 days during which in vitro testing was carried out for biochemical, haematological and functional parameters. Storage of platelets in PAS-IIIM resulted in a reduction in the rate of glycolysis and better retention of pH and hypotonic shock response reactivity. Storage in PAS-IIIM containing 20% plasma appeared to result in the retention of in vitro properties, similar to those observed during storage in standard PAS-III containing 30% plasma. The results of this study confirm the preliminary results. Similar results were seen with platelets prepared by BC and apheresis methods, despite differences in equipment, the preparation technique and in the final platelet contents achieved in the platelet units. Storage of platelets in PAS-IIIM should be considered to improve platelet function and allow plasma reduction to 20%.
Read full abstract