We develop a systematic description of spectral diffusion of ideal chromophores interacting with incoherently relaxing two-state, localized environmental degrees of freedom ("spins") for general initial environment configurations. We remedy the existing, incomplete treatments by formulating the problem in terms of the proper correlation function and by obtaining an accurate solution for generic aperiodic arrangements of environmental spins, nearly free of the customary simplifying assumptions on the multiparticle spin coordinate distribution. We report and estimate, for the first time, the effects of the drift and distortion of a narrow spectral line that arise when the line is not in the center of the inhomogeneous band. While the drift turns out to be modest in most ensemble measurements, accounting for its effects is imperative in analyzing single chromophore spectral jumps, to which end the authors propose a novel experiment. Further, we argue that by employing a sufficiently large chromophore one can decouple the concentration of the fluctuating centers from the strength of their interaction with the chromophore. Finally, the additional line broadening, owing to a distribution of the central chromophore frequencies, is evaluated. Upper estimates for an analogous broadening stemming from a nonequilibrium environment are made.
Read full abstract