This article aims to investigate the effect of Zhuyu Pills on atherosclerosis(AS) and decipher the underlying mechanism. The mouse model of AS was established by feeding with a high-fat diet for 12 weeks. The 50 successfully modeled mice with the apolipoprotein E knockout(ApoE~(-/-)) were assigned by the random number table method into 5 groups(n=10): model, low-, medium-, and high-dose(130.54, 261.08, 522.16 mg·kg~(-1), respectively) Zhuyu Pills, and atorvastatin calcium(10.40 mg·kg~(-1)). Ten C57BL/6J mice were selected as the blank group. The blank group and model group were administrated with an equal volume of normal saline, and other groups were administrated with corresponding drugs once a day for 12 weeks. At the end of drug intervention, hematoxylin-eosin(HE) staining was employed to observe the pathological changes of fat in the aorta, liver, and epididymis of mice, and the proportion of aortic plaque area, fat area in epididymis, and nonalcoholic fatty liver disease activity score(NAS) were calculated. Lipid and collagen deposition in the aorta was observed by oil red O staining and Masson staining, respectively, and the proportions of lipid and collagen deposition areas were calculated. The serum levels of superoxide dismutase(SOD), malondialdehyde(MDA), glutathione peroxidase(GSH-Px), and iron ion were measured by colorimetry. The expression of cyclooxygenase 2(COX2), ferritin heavy chain 1(FTH1), cystine/glutamate reverse transporter solute carrier family 7 member 11(SLC7A11), and glutathione peroxidase 4(GPX4) in the aorta was detected by the immunofluorescence assay. The level of tumor protein 53(p53) in the aorta was detected by immunohistochemistry. The protein levels of p53 and SLC7A11 in the aorta were determined by Western blot. The mRNA levels of p53, SLC7A11, GPX4, FTH1, prostaglandin G/H synthase 2(PTGS2), and reduced nicotinamide adenine dinucleotide phosphate oxidase 1(NOX1) in mouse aorta were determined by real-time PCR. The results showed that compared with the blank group, the model group showcased enlarged aortic plaque area, increased collagen fiber deposition, liver lipid deposition, and lipid droplets, and enlarged epididymal adipocytes. In addition, the modeling elevated the levels of iron ion and MDA and lowered the levels of SOD and GSH-Px in the serum, promoted the expression of p53 and COX2, down-regulated the protein and mRNA levels of FTH1, SLC7A11, and GPX4, and up-regulated the mRNA levels of PTGS2 and NOX1 in the aorta. Compared with the model group, low-, medium-, and high-dose Zhuyu Pills and atorvastatin calcium reduced the aortic plaque area, collagen deposition, liver lipid deposition, lipid droplets, and epididymal adipocyte volume, lowered the levels of iron ion and MDA and elevated the levels of SOD and GSH-Px in the serum, inhibited the expression of p53 and COX2, up-regulated the protein and mRNA levels of FTH1, SLC7A11, and GPX4, and down-regulated the mRNA levels of PTGS2 and NOX1 in the aorta. In conclusion, Zhuyu Pills exert definite therapeutic effect on aortic plaque in AS mice by regulating the p53/SLC7A11 signaling pathway to alleviate oxidative damage and inhibit ferroptosis.
Read full abstract