Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in pigs of all ages and reproductive failure in sows, resulting in great economic losses to the swine industry. In this work, we identified the interaction between PSMB4 and PRRSV Nsp1α by yeast two-hybrid screening. The PSMB4-Nsp1α interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and laser confocal experiments. The PCPα domain (amino acids 66 to 166) of Nsp1α and the C-terminal domain (amino acids 250 to 264) of PSMB4 were shown to be critical for the PSMB4-Nsp1α interaction. PSMB4 overexpression reduced PRRSV replication, whereas PSMB4 knockdown elicited opposing effects. Mechanistically, PSMB4 targeted K169 in Nsp1α for K63-linked ubiquitination and targeted Nsp1α for autolysosomal degradation by interacting with LC3 to enhance the activation of the lysosomal pathway. Meanwhile, we found that PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. In conclusion, our data revealed a new mechanism of PSMB4-mediated restriction of PRRSV replication, whereby PSMB4 was found to induce Nsp1α degradation and type I interferon expression, in order to impede the replication of PRRSV. IMPORTANCE In the swine industry, PRRSV is a continuous threat, and the current vaccines are not effective enough to block it. This study determined that PSMB4 plays an antiviral role against PRRSV. PSMB4 was found to interact with PRRSV Nsp1α, mediate K63-linked ubiquitination of Nsp1α at K169, and thus trigger its degradation via the lysosomal pathway. Additionally, PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. This study extends our understanding of the proteasome subunit PSMB4 against PRRSV replication and will contribute to the development of new antiviral strategies.
Read full abstract