The point defect structure of intermetallic compound oI20 UAl4 is investigated using a combination of the statistical mechanical Wagner–Schottky model and first-principles calculations within a projector augmented wave pseudopotential method in conjunction with the generalized gradient approximation. The formation energies of eight point defects were calculated taking into account the four sublattices. The point defect concentrations are calculated as function of temperature and deviation from stoichiometry. Our results show that the aluminum antisite is the constitutional point defect on the Al-rich side. At this off-stoichiometric side the dominant thermal defect is an interbranch defect where four constitutional antisite aluminum atoms are replaced by five uranium vacancies. The point defect effective formation energies are obtained and these results allow us to identify the antistructure bridge mechanism as the most probable for the diffusion for Al atoms in the Al-rich UAl4 intermetallic compound.
Read full abstract