IntroductionMonoamine oxidase type B inhibitors, including selegiline, are established as anti-Parkinsonian Drugs. Inhibition of monoamine oxidase type B enzymes might suppress the inflammation because of inhibition to generate reactive oxygen species. However, its effect on brain microstructure remains unclear. The aim of this study is to elucidate white matter and substantia nigra (SN) microstructural differences between Patients with Parkinson's disease with and without selegiline treatment by two independently recruited cohorts. MethodsDiffusion tensor imaging and free water imaging indices of WM and SN were compared among 22/15 Patients with Parkinson's disease with selegiline (PDselegiline(+)), 33/23 Patients with Parkinson's disease without selegiline (PDselegiline(−)), and 25/20 controls, in the first/second cohorts. Two cohorts were analyzed with different MRI protocols. ResultsDiffusion tensor imaging and free-water indices of major white matter tracts were significantly differed between the PDselegiline(−) and controls in both cohorts, although not between the PDselegiline(+) and controls except for restricted areas. Compared with the PDselegiline(+), free-water was significantly higher in the PDselegiline(−) in the inferior fronto-occipital fasciculus, superior longitudinal fasciculus, and superior and posterior corona radiata (first cohort) and the forceps major and splenium of the corpus callosum (second cohort). There were no significant differences in free-water of anterior or posterior substantia nigra between PDselegiline(+) and PDselegiline(−). ConclusionsSelegiline treatment might reduce the white matter microstructural abnormalities detected by free-water imaging in Parkinson's disease.
Read full abstract