Several types of compound exert their cytotoxicity by generating reactive oxygen species, notably the superoxide anion radical. These include quinoid and nitroaromatic compounds serving as redox cyclers i.e. producing superoxide at the expense of NADPH and oxygen catalyzed by cellular reductases. In specialized cell-types employed in defense such as granulocytes, eosinophils and macrophages, myeloperoxidase, NADPH oxidase and nitric oxide synthase have been identified as major sources of reactive oxygen species in cell toxicity. These include hypochlorite, singlet oxygen, Superoxide, nitric oxide and hydrogen peroxide. The interaction of superoxide and nitric oxide generates further oxidants such as peroxynitrite. Lumino-amplified Chemiluminescence generated by Kupffer cells is partially sensitive to inhibitors of NO synthase. Superoxide dismutase has been found to catalyze a novel reaction, the reversible conversion of nitric oxide to the nitroxyl anion, the latter being viewed as another form of EDRF. In the defense against oxidative damage, there are enzymatic and nonenzymatic antioxidants. Regarding compounds used pharmacologically, we have been interested in ebselen, a seleno-organic compound exhibiting GSH peroxidase activity, which protects against reactive oxygen species generated, for example, at reoxygenation following a period of hypoxia. Further, we have studied lipoate and dihydrolipoate as antioxidant redox system and as singlet oxygen quencher e.g. protecting against damage of deoxyguanosines in plasmid DNA generated by singlet oxygen.