As zoned areas of industries, industrial parks have great impacts on the environment. Several studies have demonstrated that chemical compounds and heavy metals released from industrial parks can contaminate soil, water, and air. However, as an emerging pollutant, antimicrobial resistance genes (ARGs) in industrial parks have not yet been investigated. Here, we collected soil samples from 35 sites in an industrial park in China and applied a metagenomics strategy to profile the ARGs and virulence factors (VFs). We further compared the relative abundance of ARGs between the sites (TZ_31-35) located in a beta-lactam antimicrobial-producing factory and other sites (TZ_1-30) in this industrial park. Metagenomic sequencing and assembly generated 14, 383, 065 contigs and 17, 631, 051 open reading frames (ORFs). Taxonomy annotation revealed Proteobacteria and Actinobacteria as the most abundant phylum and class, respectively. The 32 pathogenic bacterial genera listed in the virulence factor database (VFDB) were all identified from the soil metagenomes in this industrial park. In total, 685,354 ARGs (3.89% of the ORFs) and 272,694 virulence factors (VFs) (1.55% of the ORFs) were annotated. These ARGs exhibited resistance to several critically important antimicrobials, such as rifampins, fluroquinolones, and beta-lactams. In addition, no significant difference in the relative abundance of ARGs was observed between sites TZ_31-35 and TZ_1-30, indicating that ARGs have already disseminated widely in this industrial park. The present study gave us a better understanding of the whole picture of the resistome and virulome in the soil of the industrial park and suggested that we should treat the industrial park as a whole in the surveillance and maintenance of ARGs.