Biological deodorization systems are widely used to control odors and volatile organic compounds. However, the secondary contamination of bioaerosol emissions is a noteworthy issue in the operation of biofilters for off-gas purification. In this study, a multistage biofilter for benzene treatment was utilized to investigate the bioaerosol emissions under different flow rates and spray intervals. At the outlet of the biofilter, 99–7173 CFU/m3 of bioaerosols were detected, among which pathogens accounted for 8.93–98.73 %. Proteobacteria and Firmicutes dominated bioaerosols at the phylum level. The Mantel test based on the Bray-Curtis distance revealed strong influences of flow rate introduced to the biofilter and biomass colonized on the packing materials (PMs) on bioaerosol emissions. The non-metric multidimensional scaling results suggested a correlation between the bioaerosol community and bacteria on the PMs. Bacillus and Stenotrophomonas were the two main genera stripped from the biofilm on PMs to form the bioaerosols. SourceTracker analysis confirmed that microorganisms from the PMs near outlet contributed an average of 22.3 % to bioaerosols. Pathogenic bacteria carried by bioaerosols included Bacillus, Serratia, Stenotrophomonas, Achromobacter, Enterococcus, and Pseudomonas. Bioaerosols were predicted to cause human diseases, with antimicrobial drug resistance and bacterial infectious disease being the two main pathogenic pathways. Stenotrophomonas sp. LMG 19833, Pseudomonas sp., and Stenotrophomonas sp. were the keystone species in the bioaerosol co-occurrence network. Overall, results of present study promote the insight of bioaerosols, particularly pathogen emissions, and provide a basis for controlling bioaerosol contamination from biofilters.