Biofouling and corrosion of submerged equipment caused by marine organisms severely restrict the rapid development of the marine industry. Traditional antifouling or anticorrosion coatings typically serve a sole purpose and exhibit limited degradability upon failure, rendering them inadequate for current demands. Herein, a novel imine-functionalized command-degradable bio-based epoxy coating (SAHPEP-DDM) with enhanced integrated antifouling and anticorrosion performances was synthesized utilizing 1,3-bis (3-aminopropyl)-1,1,3,3-tetramethyldisiloxane and syringaldehyde. Compared with commercial epoxy resins (E51-DDM) and polydimethylsiloxanes (PDMS), the SAHPEP-DDM coating exhibits superior antifouling and anticorrosion properties due to the existence of -C=N- and Si-O-Si chain segments in the cross-linking network. The coating achieves resistance rates of 99.59 % and 99.20 % against E. coli and S. aureus, respectively, and shows promising resistance against algae and proteins, as well as excellent corrosion resistance in artificial seawater (with |Z|0.01 Hz and arc radius of about 1011 Ω and exceeding 1010 Ω respectively). The coating also exhibits excellent chemical resistance in organic solvents as well as neutral and alkaline environments. Moreover, its controlled degradation after coating failure can be achieved in acid aqueous solutions through temperature and acidity adjustments, facilitated by the presence of -C=N-. This work presents a novel degradable coating successfully coupled the dual functions of antifouling and anticorrosion coatings, avoiding the employment of intermediate coat, indicating vast potential for application in various marine engineering fields.
Read full abstract