Abstract

Biofouling and corrosion of submerged equipment caused by marine organisms severely restrict the rapid development of the marine industry. Traditional antifouling or anticorrosion coatings typically serve a sole purpose and exhibit limited degradability upon failure, rendering them inadequate for current demands. Herein, a novel imine-functionalized command-degradable bio-based epoxy coating (SAHPEP-DDM) with enhanced integrated antifouling and anticorrosion performances was synthesized utilizing 1,3-bis (3-aminopropyl)-1,1,3,3-tetramethyldisiloxane and syringaldehyde. Compared with commercial epoxy resins (E51-DDM) and polydimethylsiloxanes (PDMS), the SAHPEP-DDM coating exhibits superior antifouling and anticorrosion properties due to the existence of -C=N- and Si-O-Si chain segments in the cross-linking network. The coatingshows promising resistance against bacteria, algae and proteins, as well as excellent corrosion resistance in artificial seawater. The coating also exhibits excellent chemical resistance in organic solvents as well as neutral and alkaline environments. Moreover, its controlled degradation afterfailure can be achieved in acid aqueous solutions through temperature and acidity adjustments, facilitated by the presence of -C=N-. This work presents a novel degradable coating successfully coupled the dual functions of antifouling and anticorrosion coatings, avoiding the employment of intermediate coat, indicating vast potential for application inmarine engineering fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.