Abstract

Under the background of the development of marine resources, marine corrosion has become a focus problem. A series of Si and N incorporated hydrogenated diamond like carbon (SiN-HDLC) film with excellent corrosion resistance performance was deposited by plasma enhanced chemical vapor deposition. Results suggest that the sp3/sp2 ratio of SiN-HDLC films presents a trend of increasing first and then decreasing with the improvement of the N2/SiH4 ratio. The adhesion between the as-deposited HDLC film and the substrate is tight (no microcracks) and the film surface is uniform and compact. The potentiodynamic polarization and electrochemical impedance spectroscopy results indicate that the SiN-HDLC film possesses better corrosion resistance in artificial seawater than that of Si-HDLC and N-HDLC film, and is much better than 304SS substrate. Besides, the SiN-HDLC film with the N2/SiH4 of 1/1 shows the best corrosion resistance. The as-deposited SiN-HDLC film possesses more excellent corrosion resistance in the artificial seawater environment compared with the reported DLC films and this study provides a promising protective material for marine corrosion resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.