Earlier papers have addressed floods from warm-air advection (WAA) in southeast Australia and around the globe, and extreme rainfall in US hurricanes and Australian tropical cyclones (TCs). This is the first paper to address the WAA phenomena in causing monsoon and TC floods and in TC-like systems which develop over the interior of northern Australia. The inland events help explain Australia’s worst tropical flooding disaster in 1916. A disastrous series of floods during late January and early February 2019 caused widespread damage in tropical north Queensland both in inland regions and along the coast. This occurred when some large-scale climate influences, including the sea surface temperatures suggested conditions would not lead to major flooding. Therefore, it is important to focus on the weather systems to understand the processes that resulted in the extreme rainfall responsible for the flooding. The structure of weather systems in most areas involved a pattern in which the winds turned in an anticyclonic sense as they ascended from the low to middle levels of the atmosphere (often referred to as WAA) which was maintained over large areas for 11 days. HYSPLIT air parcel trajectory observations were employed to confirm these ascent analyses. Examination of a period during which the heaviest rain was reported and compared with climatology showed a much stronger monsoon circulation, widespread WAA through tropical Queensland where normally its descending equivalent of cold-air advection is found, and higher mean sea level pressures along the south Queensland coast. The monsoon low was located between strong deep monsoon westerlies to the north and strong deep easterlies to the south which ensured its slow movement. This non-TC event produced heavy inland rainfall. Extreme inland rainfall is rare in this region. Dare et al. (2012), using data from 1969/70 to 2009/10, showed that over north Queensland non-TC events produced a large percentage of the total rainfall. The vertical structure associated with one of the earlier events that occurred in 2008 had sufficient data to detect strong and widespread WAA overlying an onshore moist tropical airstream. This appears to have played a crucial role in such extreme rainfall extending well inland and perhaps gives insight to the cause of a 1916 flooding disaster at Clermont which claimed around 70 lives. Several other events over the inland Tropics with strong WAA also help explain the 1916 disaster.