The growing interest in developing antibacterial textiles using natural functional agents is largely driven by their sustainable and eco-friendly attributes. Lignin, a highly available biopolymer with a polyphenolic structure, has drawn attention due to its potential as a bioactive antibacterial agent. However, its inherent heterogeneity poses challenges, particularly regarding its antibacterial efficacy. In this study, unmodified kraft lignin sourced directly from the paper industry was applied to cotton and polyester fabrics, using a knife-coating technique with varying concentrations (0%, 5%, 10%, 20%, and 30% w/v), to assess its potential as an antibacterial coating. The lignin-coated fabrics demonstrated hydrophobic properties, with water contact angles reaching up to 110.3° and 112.6°, for polyester and cotton fabrics, respectively, alongside significantly reduced air permeability and water vapor permeability indexes, regardless of lignin concentration. Antibacterial evaluations also revealed that lignin-based coatings, with at least 10% w/v concentration, allowed cotton fabrics with a bacterial reduction surpassing 96%, according to ASTM E2149-2013, particularly for Gram-positive S. aureus, highlighting the potential of lignin as an antibacterial agent. Despite their limited resistance to domestic washing, the lignin-coated fabrics demonstrated exceptional stability under hot-pressing conditions. Therefore, this stability, combined with the hydrophobic and antibacterial properties observed, particularly on coated cotton fabrics, highlights the potential application of lignin-based coatings for the development of antibacterial and water-repellent textiles, with these coatings being particularly suited for single-use applications or scenarios where washing resistance is not a requirement. This approach offers a sustainable and efficient method for producing functional textiles while enabling value-added utilization of lignin, showcasing its potential as an eco-friendly solution in textile functionalization.
Read full abstract