Background: Oxaliplatin-based hyperthermic intraperitoneal chemotherapy (HIPEC) using the original 30 min protocol has shown limited benefits in patients with peritoneal metastasis of colorectal cancer (PMCRC), likely due to the short duration, which limits drug penetration into tumor nodules. Bevacizumab, an antiangiogenic antibody that modifies the tumor microenvironment, may improve drug delivery during HIPEC. This in silico study evaluates the availability of oxaliplatin within tumor nodules when HIPEC is performed after bevacizumab treatment. Methods: Using a computational fluid dynamics (CFD) model of HIPEC, the temperature and oxaliplatin distribution within the rat abdomen were calculated, followed by a model of drug transport within tumor nodules located at various sites in the peritoneum. The vascular normalization effect of the bevacizumab treatment was incorporated by adjusting the biophysical parameters of the tumor nodules. The effective penetration depth values, including the thermal enhancement ratio of cytotoxicity, were then compared between HIPEC alone and HIPEC combined with the bevacizumab treatment. Results: After bevacizumab treatments at doses of 0.5 mg/kg and 5 mg/kg, the oxaliplatin availability increased by up to 20% and 45% when HIPEC was performed during the vascular normalization phase, with the penetration depth increasing by 1.5-fold and 2.3-fold, respectively. Tumors with lower collagen densities and larger vascular pore sizes showed higher oxaliplatin enhancement after the combined treatment. Bevacizumab also enabled a reduction in the oxaliplatin dose (up to half at 5 mg/kg bevacizumab) while maintaining effective drug levels in the tumor nodules, potentially reducing systemic toxicity. Conclusions: These findings suggest that administering oxaliplatin-based HIPEC during bevacizumab-induced vascular normalization could significantly improve drug penetration and enhance treatment efficacy.
Read full abstract