PurposeNeoangiogenesis is necessary for adhesion and invasiveness of endometriotic lesions in women affected by endometriosis. Vascular endothelial growth factor (VEGF) is one of the main components of angiogenesis and is part of the major pathway tissue factor (TF)-protease activated receptor-2 (PAR-2)-VEGF that leads to neoangiogenesis. Specificity protein 1 (SP1) is a transcriptional factor that has recently been studied for its crucial role in angiogenesis via a specific pathway. We hypothesize that by blocking angiogenetic pathways we can suppress endometriotic lesions. Gonadotrophin-releasing hormone-agonists (GnRH-a) are routinely used, especially preoperatively, in endometriosis. It would be of great interest to clarify which angiogenetic pathways are affected and, thereby, pave the way for further research into antiangiogenetic effects on endometriosis.MethodsWe used quantitative real-time polymerase chain reaction (qRT-PCR) to study mRNA expression levels of TF, PAR-2, VEGF, and SP1 in endometriotic tissues of women who underwent surgery for endometriosis and received GnRH-a (leuprolide acetate) preoperatively.ResultsVEGF, TF, and PAR-2 expression is significantly lower in patients who received treatment (p < 0,001) compared to those who did not, whereas SP1 expression is not altered (p = 0.779).ConclusionsGnRH-a administration does affect some pathways of angiogenesis in endometriotic lesions, but not all of them. Therefore, supplementary treatments that affect the SP1 pathway of angiogenesis should be developed to enhance the antiangiogenetic effect of GnRH-a in patients with endometriosis.Trial registrationClinicaltrial.gov ID: NCT06106932.
Read full abstract