Polymer photo-oxidation aging is a significant issue in plastics engineering, leading to reduced performance, shorter lifespan, and additional pollution. Anti-aging agents, including antioxidants and ultraviolet (UV)-shielding agents, are used to ameliorate the above problems. However, multi-component agents involve complex synthesis, mixed processing, and environmental concerns. Therefore, developing robust, multi-functional, one-component anti-aging agents is crucial. This study proposed a new class of one-component poly(coumarin) anti-aging agents, synthesized through enzymatic polymerization of coumarin. These agents exhibited a broader UV absorption spectrum and higher antioxidative capacity than commercial UV-shielding agent UV326 and antioxidant AO1010. Calculating the O-H bond dissociation energy and reaction energy barrier with peroxy free radicals (ROO˙) showed that the material could effectively attenuate UV radiation and scavenge free radicals, improving anti-aging properties. Further studies indicated the potential of poly(coumarin) anti-aging agents for enhanced polymer photostability and improved food preservation packaging. Consequently, poly(coumarin) nanoparticles can act as versatile anti-aging compounds, potentially replacing conventional multi-component agents and providing a new foundation for one-component materials with multiple functions.
Read full abstract