Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells. The produced AgNPs-SSE were identified using scanning electron micrograph (SEM), energy-dispersive X-ray (EDAX) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The cell-killing effects of AgNPs-SSE on MDA-MB231 mammary carcinoma cells were evaluated in vitro using the MTT assay over 24h. Apoptosis induction was conducted by cell cycle analysis, annexin V-FITC/PI staining, reactive oxygen species (ROS) generation, and Hoechst staining. Additionally, the gene expression of βcatenin, GSK3β, and CyclinD1 was analyzed using quantitative real-time PCR (qRT-PCR). Microscopic analysis confirmed the successful fabrication of globular AgNPs-SSE, with a mean particle dimension of 19 ± 10nm. The MTT assay revealed that IC50 value of AgNPs-SSE was 48.5µg/mL for mammary carcinoma cells and 114µg/mL for normal cells. Annexin V-FITC/PI staining specified that 85.88% of cancer cells treated with AgNPs-SSE underwent either early or late apoptosis. Treatment with AgNPs-SSE also caused a considerable rise in the subG1 cell cycle population and ROS production. Furthermore, the upregulation of βcatenin and downregulation of CyclinD1 gene expression confirmed the apoptotic mechanism. In conclusion, the findings suggest that phyto-synthesized AgNPs-SSE can restrain the expansion of breast carcinoma cells and provoke apoptosis through oxidative stress. These results highlight the potential of AgNPs-SSE as an antitumor agent against breast cancer.
Read full abstract