What prevents the fall in anti-Müllerian hormone (AMH) levels in polycystic ovary syndrome (PCOS) and what are the consequences of this for follicle progression in these ovaries? Exposure of granulosa cells (GCs) to high levels of androgens, equivalent to that found in PCOS, prevented the fall in AMH and was associated with dysregulated AMH-SMAD signalling leading to stalled follicle progression in PCOS. In normal ovaries, AMH exerts an inhibitory role on antral follicle development and a fall in AMH levels is a prerequisite for ovulation. Levels of AMH are high in PCOS, contributing to the dysregulated follicle growth that is a common cause of anovulatory infertility in these women. Human KGN-GC (the cell line that corresponds to immature GC from smaller antral follicles (AF)) were cultured with a range of doses of various androgens to determine the effects on AMH production. KGN-GC were also treated with PHTPP (an oestrogen receptor β (ERβ) antagonist) to examine the relationship between AMH expression and the ratio of ERα:ERβ. The differential dose-related effect of AMH on gene expression and SMAD signalling was investigated in human granulosa-luteal cells (hGLC) from women with normal ovaries, with polycystic ovarian morphology (PCOM) and with PCOS. KGN-GC were also cultured for a prolonged period with AMH at different doses to assess the effect on cell proliferation and viability. AMH protein production by cells exposed to androgens was measured by ELISA. The effect of PHTPP on the mRNA expression levels of AMH, ERα and ERβ was assessed by real-time quantitative PCR (qPCR). The influence of AMH on the relative mRNA expression levels of aromatase, AMH and its receptor AMHRII, and the FSH and LH receptor (FSHR and LHR) in control, PCOM and PCOS hGLCs was quantified by qPCR. Western blotting was used to assess changes in levels of SMAD proteins (pSMAD-1/5/8; SMAD-4; SMAD-6 and SMAD-7) after exposure of hGLCs from healthy women and women with PCOS to AMH. The ApoTox-Glo Triplex assay was used to evaluate the effect of AMH on cell viability, cytotoxicity and apoptosis. Testosterone reduced AMH protein secreted from KGN-GC at 10-9-10-7M (P< 0.05; P< 0.005, multiple uncorrected comparisons Fishers least squares difference), but at equivalent hyperandrogenemic levels no change was seen in AMH levels. 5α-DHT produced a significant dose-related increase in AMH protein secreted into the media (P= 0.022, ANOVA). Increasing the mRNA ratio of ERα:ERβ produced a corresponding increase in AMH mRNA expression (P= 0.015, two-way ANOVA). AMH increased mRNA levels of aromatase (P< 0.05, one-way ANOVA) and FSHR (P< 0.0001, one-way ANOVA) in hGLCs from women with PCOM, but not from normal cells or PCOS (normal n= 7, PCOM n= 5, PCOS n= 4). In contrast to hGLCs from ovulatory ovaries, in PCOS AMH reduced protein levels (cell content) of stimulatory pSMAD-1/5/8 and SMAD-4 but increased inhibitory SMAD-6 and -7 (P< 0.05, normal n= 6, PCOS n= 3). AMH at 20 and 50ng/ml decreased KGN-GC cell proliferation but not viability after 8days of treatment (P< 0.005, two-way ANOVA). N/A. Luteinised GC from women undergoing IVF have a relatively low expression of AMH/AMHRII but advantageously continue to display responses inherent to the ovarian morphology from which they are collected. To compensate, we also utilised the KGN cell line which has been characterised to be at a developmental stage close to that of immature GC. The lack of flutamide influence on testosterone effects is not in itself sufficient evidence to conclude that the effect on AMH is mediated via conversion to oestrogen, and the effect of aromatase inhibitors or oestrogen-specific inhibitors should be tested. The effect of flutamide was tested on testosterone but not DHT. Normal folliculogenesis and ovulation are dependent on the timely reduction in AMH production from GC at the time of follicle selection. Our findings reveal for the first time that theca-derived androgens may play a role in this model but that this inhibitory action is lost at levels of androgens equivalent to those seen in PCOS. The AMH decline may either be a direct effect of androgens or an indirect one via conversion to oestradiol and acting through the upregulation of ERα, which is known to stimulate the AMH promoter. Interestingly, the ability of GCs to respond to this continually elevated AMH level appears to be reduced in cells from women with PCOS due to an adaptive alteration in the SMAD signalling pathway and lower expression of AMHRII, indicating a form of 'AMH resistance'. This study was funded by the Thomas Addison Scholarship, St Georges Hospital Trust. The authors report no conflict of interest in this work and have nothing to disclose. N/A.
Read full abstract