Abstract
A growing body of literature provides evidence of a prominent role for bone morphogenetic proteins (BMPs) in regulating various stages of ovarian follicle development. Several actions for BMP6 have been previously reported in the hen ovary, yet only within postselection (preovulatory) follicles. The initial hypothesis tested herein is that BMP6 increases FSH receptor (FSHR) mRNA expression within the granulosa layer of prehierarchal (6-8 mm) follicles (6-8 GC). BMP6 mRNA is expressed at higher levels within undifferentiated (1-8 mm) follicles compared with selected (≥9 mm) follicles. Recombinant human (rh) BMP6 initiates SMAD1, 5, 8 signaling in cultured 6-8 GC and promotes FSHR mRNA expression in a dose-related fashion. In addition, a 21 h preculture with rhBMP6 followed by a 3 h challenge with FSH increases cAMP accumulation, STAR (StAR) expression, and progesterone production. Interestingly, rhBMP6 also increases expression of anti-Müllerian hormone (AMH) mRNA in cultured 6-8 GC. This related BMP family member has previously been implicated in negatively regulating FSH responsiveness during follicle development. Considering these data, we propose that among the paracrine and/or autocrine actions of BMP6 within prehierarchal follicles is the maintenance of both FSHR and AMH mRNA expression. We predict that before follicle selection, one action of AMH within granulosa cells from 6 to 8 mm follicles is to help suppress FSHR signaling and prevent premature granulosa cell differentiation. At the time of selection, we speculate that the yet undefined signal directly responsible for selection initiates FSH responsiveness. As a result, FSH signaling suppresses AMH expression and initiates the differentiation of granulosa within the selected follicle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.