Exposure to ionizing radiation is inevitable due to its extensive use in industrial and medical applications. The search for effective and safe natural therapeutic agents as alternatives to chemical drugs is crucial to mitigate their side effects. This study aimed to evaluate the effects of citicoline as a standalone treatment or in combination with the anti-hepatotoxic drug silymarin in protecting against liver injury caused by γ-radiation in rats. The rats were exposed to γ-radiation (7Gy) and treated with citicoline (300mg/kg/day) and/or silymarin (50mg/kg/day). The results showed that citicoline alleviated liver damage in irradiated rats by reducing hepatic malondialdehyde levels, serum aspartate aminotransferase activity, and inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and nuclear factor-kappa B (NF-κB). It also increased acetylcholine (ACh) levels and the gene expression of the anti-inflammatory protein α7 nicotinic acetylcholine receptor (α7nAChR). Additionally, citicoline improved serum triiodothyronine (T3) levels, thyroid hormone receptor beta (TRβ) gene expression, and iodothyronine deiodinase type 1 activity in hepatic tissues of irradiated rats. Furthermore, citicoline enhanced the effects of silymarin on thyroxine (T4), TRβ, ACh, and α7nAChR when co-administered in irradiated rats. Histopathological analysis confirmed these findings, demonstrating improved liver tissue structure. Citicoline mitigates γ-radiation-induced liver damage by reducing oxidative stress, activating the cholinergic anti-inflammatory pathway, and modulating thyroid hormone metabolism. These findings support the use of citicoline as a safe standalone treatment or as an adjuvant with silymarin for managing liver damage and thyroid hormone disturbances caused by γ-irradiation.
Read full abstract