• Enolase identification and localization in the mosquito vector Ae. albopictus C6/36 cells. • Anti-enolase antibodies inhibited binding and infection of DENV-2 in C6/36 cells. • Ae. albopictus enolase has the potential to express the MBP-1 protein. • Cell membrane enolase co-localized with the DENV-2 E protein in C6/36 cells. Currently, there are no antiviral drugs that effectively reduce the risks and treat the symptoms associated with dengue virus (DENV). Consequently, efforts remain primarily focused on transmission reduction. One such effort concerns DENV receptors in mosquito vectors Aedes aegypti and Aedes albopictus . Despite a lack of direct evidence demonstrating the binding of DENV to cells in mosquito vectors, one putative DENV binding protein has been α-enolase. To develop a deeper understanding, this study tested whether DENV proteins bind to enolase localized in the cytoplasmic membrane of C6/36 cells using both anti-enolase-specific antibodies, and by colocalization analysis, using confocal microscopy. Additionally, to probe the interaction of enolase with the DENV E protein, we performed a docking analysis using PatchDock and FireDock software packages. Study results demonstrate that the DENV E protein interacts with enolase in the plasma membrane of C6/36 cells of Ae. albopictus . Specific anti-enolase antibodies were found to inhibit DENV infection of these cells. Moreover, enolase was found to be localized to the cytoplasmic membrane, cytoplasm, and nucleus. These combined findings suggest that enolase participates in the entrance mechanism of DENV into vector cells.
Read full abstract