Abstract

Ookinete invasion of the mosquito midgut is an essential step for the development of the malaria parasite in the mosquito. Invasion involves recognition between a presumed mosquito midgut receptor and an ookinete ligand. Here, we show that enolase lines the ookinete surface. An antienolase antibody inhibits oocyst development of both Plasmodium berghei and Plasmodium falciparum, suggesting that enolase may act as an invasion ligand. Importantly, we demonstrate that surface enolase captures plasminogen from the mammalian blood meal via its lysine motif (DKSLVK) and that this interaction is essential for midgut invasion, because plasminogen depletion leads to a strong inhibition of oocyst formation. Although addition of recombinant WT plasminogen to depleted serum rescues oocyst formation, recombinant inactive plasminogen does not, thus emphasizing the importance of plasmin proteolytic activity for ookinete invasion. The results support the hypothesis that enolase on the surface of Plasmodium ookinetes plays a dual role in midgut invasion: by acting as a ligand that interacts with the midgut epithelium and, further, by capturing plasminogen, whose conversion to active plasmin promotes the invasion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.